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SUMMARY

The use of computers to optimize free parameters of a system has become
relatively widespread in many areas of engineering. Parameter optimization
codes have been written for that purpose, and make it possible for a design
engineer, once he has developed the mathematics of a system, to optimize its
parameters according to some criteria. But of equal interest to the design
engineer is the sensitivity of the optimized criteria to departure of the
parameters away from their optimal value. The purpose of this thesis is to
show ways in which a parameter optimization code may be augmented to yield
such sensitivity information.

A Fletcher and Powell version of Davidon's variable metric optimization
search technique was employed to optimize multi-parameter functions. Their
method is useful in that it computes the inverse Hessian matrix (or matrix of
second derivatives) , which completely describes the curvature of the function
at the optimum. Equations were developed so that the sensitivity could be
expressed in a meaningful output format. This was made possible through the
use of matrix inversion and eigenvalue analysis subroutines which were ob-
tained from the scientific subroutine library of the IBM 360 91 and used in

conjunction with a digital computer code employing the Fletcher and Powell
technique. Equality constrained optimization problems were also considered
by employing the penalty factor method proposed by Courant and used by Kelley,
Equations analogous to the use of Lagrangian Multipliers were used to deter-
mine the cost of the equality constraint.

Example problems are offered showing the optimal solutions, sensitivity
data at the optimum, and interpretation of that data. The well known
Rosenbrock function was used to exhibit the accuracy of the methods employed.
A typical engineering problem was solved involving the sensitivity of an
optimal nuclear rocket engine used to inject a payload onto an interplan-
etary trajectory. The results indicated that the thermal power of the re-

actor and the ratio of length to diameter of the core could be varied con-

siderably from their optimal values with little cost. The power density
however was relatively fixed for optimal operation.
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I. INTRODUCTION

The use of computers to optimize free parameters of a system has be-

come relatively widespread in many areas of engineering. Parameter opti-

mization codes have been written for that purpose, and make it possible

for a design engineer, once he has developed the mathematics of a system,

to optimize its parameters according to some criteria. But of equal in-

terest to the design engineer is the sensitivity of the optimized criteria

to departure of the parameters away from their optimal value. The purpose

of this thesis is to show ways in which a parameter optimization code may

be augmented to yield such sensitivity information. The interest in this

is evident.

Since the engineer is working with temperatures, pressures, masses,

etc. , the computed optimal solution cannot be implemented exactly. Physical

parameters are subject to uncontrollable variations and the resulting de-

parture from the optimum may be quite significant. For space flight

applications, maximum payloads might be of primary interest for one mission

while a minimum fuel consumption the criterion for the next. Design require-

ments for a Venus flyby will certainly differ from those of a Mars lander

or Jupiter probe, and yet many of the systems must be flexible enough to

be useful for all three. Thus, the optimized solution must also contain

significant information about departures from the optimum. This thesis

addresses that problem; i.e. sensitivity analysis at the optimum.

Parameter optimization algorithms are many in number and varied in

application. They differ primarily in their rate of convergence and the

restrictions imposed on the function under consideration. Nearly all

require a large number of iterations to achieve a given accuracy in locating





the optimum, and some procedures may not converge from a poor starting point,

Because, near the optimum, the second order terms in the Taylor series

expansion dominate, the only method which will converge quickly for a gen-

eral function are those which will guarantee to find the optimum of a

general quadratic function speedily. Fletcher and Powell [1]*A have pro-

duced such a method which was based upon a procedure described by Davidon

[2]. The method is superior to other techniques which possess quadratic

convergence in that it makes use of information determined by previous

iterations and also in that each iteration is quick and simple to carry

out. The primary justification for its use however, lies in the fact that

the method yields the necessary information to determine the curvature of

the objective function at the optimum.

The method of Fletcher and Powell estimates and continually updates

the inverse of the Hessian matrix, H, (or matrix of second derivatives)

during the optimization search so that a close approximation to the true

value at the optimum is reached. Through the use of the eigenvalues and

eigenvectors of the Hessian matrix, analysis of the characteristics of the

objective function in the neighborhood of the optimum is possible.

As previously mentioned, it is of interest to know not only where the

optimum is located, but by how much each parameter X. may be changed from

* Figures in parenthesis indicate references listed following the text,
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its optimal value before a significant change, A, in the objective func-

tion occurs. The variation of the x . may be independent of the other x .,

or several parameters may be changed simultaneously in a co-ordinated fashion

away from the optimum. The latter variation might allow for significantly

large departures from the optimum for a specified A when the function

possesses the characteristics of an N-dimensional "ridge".

In this respect, it is intended that this thesis may be used to evalu-

ate and analyze the optimum of any general function of N independent

variables in such a way that a complete sensitivity at the optimum is

clearly presented in a useful output format. It is shown to the user

which of the specified variables may be changed and the magnitudes of those

changes before specified degration in the objective function will be

exceeded.

-3-





-4-

II. PROBLEM DEFINITION

An analysis of the behavior at. the optimum of an N-variable function

is possible where the second derivatives are known. Suppose that Y is

a real valued function of N variables with continuous first and second

partials and possesses a relative minimum at X , then the first deriva-
o

tive will vanish and by Taylor series expansion:

Y - Y =AY=-AX
opt 2 o

8x
2

AX + Higher Order Terms
o

(1)

where is the Hessian matrix (H) of Y at the optimum,

_°x _

From the Taylor series approximation (1) we find that the gradient

AY(X) = JL (x)

>x

-1

VY(X) (2)

and solving for X yields

:

X = X -
o

V2
1 y

n -1

(X)

ax-

VY(X) (3)

so that if

3x
2

1

(X) were known, the step to the optimum would be

given by (3) . Some optimization algorithms collect information which





generate an approximation to the inverse Hessian matrix during the search

for the optimum. These algorithms provide H~ so that the problem of

obtaining 11, in the use of such an algorithm is reduced to the relatively

9
2
vsimple additional task of inverting the N x N matrix —•u

.

J3x
2

_

Historically the method is similar to Newton's method which minimizes a

function Y(x), x on N-vector, by generating a sequence of points (compare

with equation (3))

x
(k+i) . x0O. a0O ptOO]-. TO

oo

(k)
where a is an appropriately chosen scaler constant. Fletcher and

Powell's version is in fact a quasi-Newton method which uses an initial

(k) - i

estimate and computational history to generate an estimate to [H v
]

rather than performing the computational work of evaluating and inverting

the matrix at each step.
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III. DAVIDON'S METHOD

Davidon introduced a variable metric method which was the first

optimization technique to use past information estimating the inverse

Hessian matrix. Fletcher and Powell have improved upon the method by

simplifying the iteration scheme and modifying the criterion for con-

vergence. Their method, which numerically determines the minimum of

a function of several variables, combines the best features of the con-

ventional gradient method and Newton's method, namely the sureness of

convergence of the former and the quadratic terminal convergence of

the latter. An excellent exposition of the method, including conver-

gence proofs, has been given by Fletcher and Powell. For the purpose

of this thesis however, it will suffice here to state the algorithm and

point out the usefulness of its main features as was done by Kelley [3]

Let us denote the free parameters as X. and the function to be

minimized as Y(x). It is assumed that Y has continuous first and

o
second partial derivatives with respect to X. Any starting point X

o
is chosen according to some criteria*. At the starting point X , the

gradient vector Y as well as Y itself, is evaluated. A change is

o
then made in X according to

:

AX = -a H" 1
Y (4)

* The freedom in the choice of the starting point depends on Y . If Y

is well behaved, this choice is free. In other cases, the starting

point must be close to the optimum to assure convergence.





where H" is a positive definite, symmetric matrix, defining a metric

in the X-hyperspace. Its initial selection is otherwise arbitrary. For

general purposes the unit matrix may be used, but if the parameters differ

by orders of magnitude it is convenient to either scale them or to estimate

the accuracy with which they are to be determined, a > is a step size

parameter.

In Davidon's method, the one-dimensional minimum of F vs . a is

O -1

obtained along the vector originating in X in the direction H Y .

A.

At the new X, the gradient vector Y is again evaluated. The H"

matrix is updated according to

H"
1 + AH"1 = H

_1
+ A + B (5)

where

T
AX AX

A =
AX AY

x

and generates the inverse of H in N steps for the quadratic function

and where

- H
_1

Ay ay
t

h
_1

B = x x

£Y
t h

_1
ay

x x

is intended to cancel the initial assumption for H 1
[4 ]. The procedure

* o

is begun again with the new values of X, Y , H

-7-





It is shown in [1] that H remains positive definite and that, as

X approaches the minimizing point, H~ approaches Y
__

~ evaluated at
XX

the minimum. For quadratic Y, in N-dimensional space, the minimum is

obtained in, at most, N steps (within round-off error): the method is

quadratically convergent.

For more general functions having the smoothness properties assumed,

a Taylor expansion through quadratic terms provides a good representation

of the function in some neighborhood of the minimum. With H~ converged,

the minimum of Y vs. a then will occur for a = 1,

AX = -a H" 1 Y
x

will approach the value given by Newton's method, namely -Y Y .

XX X
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IV. SENSITIVITY OF THE PERFORMANCE FUNCTION AT THE OPTIMUM

Assuming that the optimum and H at the optimum have been deter-

mined and that H has been inverted, then all the necessary information

has been collected for a detailed analysis of the sensitivity of the per-

formance function to changes in the performance parameters.

Let the criterion function be

Y(x
x

, x
2

,
• V

and assume for simplicity that the origin, i.e.

x., x_ = = x =012 n

is an analytic optimum of Y. Around the optimum

1 T
Y = -j X'HX (6)

where

H =
3^

3x. 3x

.

i 3

s a
ij

is the Hessian matrix of Y at 0.





Independent Variation (one at a time)

If one parameter at a time is allowed to depart from the optimum,

the function Y is

2 ix i

where a.. is the corresponding diagonal term of H. For an assigned

change A in Y we find

± Ax. - ±
i

2AY

a. .

(7)

where ± Ax. is the allowable change in x. for the previously assigned

acceptable variation in Y.

Simultaneous Variation

If one allows several parameters to be changed in a co-ordinated fashion

away from the optimum, departures from for a specified AY may be

significantly larger than those shown in the one-parameter-at-a-time case

To illustrate this, consider the case in a 2-dimensional parametric space

where the function y presents the characteristics of a ridge as illustrated

in Figure 1.

The Y =1A line intersects the x, and x axes at distances which

are far less than the values of x and x~ at the end of the Y =1A

contour. (Five times less in the case of Figure 1).

-10-





A Skew Ridge Illustrating Advantage of Simultaneous Variation

Figure 1
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Eigenvalues and Eigenvectors of _H

To be able to analyze the characteristics of the Y surface in the

neighborhood of 0, it is convenient to make use of the eigenvalues and

eigenvectors of H at that point.

It is assumed here that the final use of this analysis will be in

computer programs, and that matrices eigenvalue and eigenvector search

subroutines are either available or easily implementable. To that respect,

we note that H is a symmetric, positive definite matrix, and that know-

ledge of this fact simplifies the implementation of such subroutines.

Let X. and V. be respectively the eigenvalues and eigenvectors

of H [5], i.e.

det (H - XI) =

H V. = X. V.
i li

Since H is real and symmetric the eigenvalues are real and the

eigenvectors are orthogonal and may be expressed in orthonormal form:

— T —
V. • V. = 1 (normal)
i i

-T -
V. • V. = i ^ j (orthogonal)

If the N-parameters are allowed to be changed in the direction of the

i
th

eigenvector, i.e. AX - k. V , then the degradation in the perfor-

mance function AY is:

-12-





1 . - T
H k. \

1
AY = - k. V. H k. V. (8)2 1 1 xi v J

but

__ _ _T -
Ii V. = A. V. and V • V = 1ill ii

so that

2 i i

and for an allowable variation A in Y

AY = \ k.
2

A. (9)

/2AY
If <10 >

k. represents how far in the direction of the normalized i eigenvector

one may travel on the response surface before degrading the performance

function by AY. It is observed that k is a maximum for A . ,mm

so that the direction of .least

sensitivity to changes in the

parameters, x.K 2
j

the eigenvector

is given

with A =

by

A .~ mm

In other words the length of the AX vector = / Z AX.
2 is maximized for

X

a given ' AY in the performance function.

Consider a hypothetical 2-variable optimization problem where the eigen-

values of H at assume the values of 1 and 10, i.e.

-13-





A =1; A
2

= 10

and the associated orthonormal eigenvectors are;

V
1

= (1,0) and V"
2

= (0,1)

respectively. The contour of the objective function at the optimum will

then assume the shape of Figure 2.

Observe that for a given Ay, the distance from the optimum in the

direction of V.. is considerably greater than in the direction of V^.

In fact, it follows directly from (10) that the distance is/ _2 greater.

It is evident that the relative length of any existing ridges in the

response surface will be determined by the square root of the ratio of

any two eigenvalues and that the magnitude of the sensitivity for a

given A will be determined by the square root of the eigenvalues.

Let two distinct solutions of optimization problems assume the values

Solution 1 (as before) Solution 2

Xu -1 A
l2

= 10 ^-0.1 ^22
= 1

V
x

= (1,0) V
2

= (0,1) V
±

= (1,0) V
2

= (0,1)

The response surfaces will then assume the shapes of Figure 3a and Figure

3b respectively.

Notice that the ratio of the eigenvalues has remained constant and

that the shape of the response surface is unchanged. The magnitude of

the eigenvalues was decreased by a factor of 10 and if drawn to scale the

response surface would be expanded in all directions by a factor of /l0 .

-14-





x
1

= i

A
2

= 10

Effect of Eigenvalue Ratio on Response Surface

Figure 2
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'—&-+

Au - 1.0

x
12

- 10.

T— x
l

Figure 3a

X'

xn - 0.1

A
22

- 1.0

Figure 3b

Effect of the Magnitude of Eigenvalues on the Shape of the

Response Surface

Figure 3
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Skew Ridges

The previous examples have pointed out that when the matrix H has

one eigenvalue much smaller than all other ones a ridge will exist in the

response surface. A skew ridge exists when one eigenvalue is much smaller

than all other ones, and the corresponding eigenvector is not parallel to

one of the axis in X-space.

If a ridge is parallel to one

axis in X-space, it can always

be removed by a change in scale

along that axis. It is there-

fore representative of the way

scales are chosen rather than

a characteristic of the func-

tion to be optimized .

The situation is completely different if the ridge is at an angle to

the axis because no change in scaling can remove the ridge. Such a ridge

reflects an interaction between parameters in the way in which they affect

the criterion function.

Only when the eigenvalues and eigenvectors of the Hessian matrix are

known, can such a ridge be discovered; and only then can the characteristics

of the optimum be determined. The complete search of eigenvalues and eigen-

vectors of H and the derivation of the resulting sensitivity information

is contained in the computer program described in the following section.

-17-
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V. COMPUTER PROGRAM

The program described in this thesis makes use of a standard,

Powell-Fletcher type, parameter-optimization computer software

package (6). It contains a multi-dimensional optimization algorithm

similar to Davidon's variable metric method as was previously described.

The matrix inversion and eigenvalue analysis subroutines were obtained

from the scientific subroutine library of the IBM 360 model 91. A listing

of these subroutines is presented in the Appendix. A simplified flow

diagram illustrating the coordinated use of these programs is shown on

the following page.

Necessary Input for Sensitivity Output

The input is the expression relating the objective function Y to

the N independent variables x.. The expression may take the form of
x

a single equation, e.g.

Y = f (x
±

)

or may comprise any number of subroutines as long as the objective function

Y and the N independent variables are defined. The allowable departure A

from the optimum is also a required input and must be specified by the user.

It may be expressed as a percentage change in Y, e.g.





Y = f(x)

•

POWELL - FLETCHER

OPTIMIZATION ALGORITHM

X Y H" 1

OPT' OPT'

MATRIX INVERSION

H
'

EIGENVALUES,

EIGENVECTORS

H, A., V.

SENSITIVITY

EQUATIONS

V
AX. (independent)

(AX) . (along eigenvector)

Flow Chart of Computer Programs
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Ay = 1% y
opt

or Y = 99% Y
opt

or as a fixed quantity, e.g,

AY = 10.

Output Format

Given the required input:

Y = f(x.)

Y A (a constant)

the sensitivity information is presented in the following table for con-

venience in analysis.

Y AY
opt

TABLE I

x

X-

X,

"opt

X
N

Ax for Specified Ay

Independent Simultaneous Variation

Variation

±Ax„

±Ax,

±Ax
N

min

Ax,

Ax,

Ax.

X = X
max

Ax.

Ax,

Ax
N

-20-
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VI. NUMERICAL EXAMPLE: ROSENBROCK FUNCTION

In order to illustrate the usefulness and accuracy of sensitivity

analysis a standard test function is offered as an example. The function

(Xl , x
2

) = 100(x
2

- x^r + (1 - x
x
>

was proposed by Rosenbrock and is interesting in that it possesses a

steep-sided ridge following the curve x = x as shown in Figure 4.

The exact solution of the problem is offered along with the computed

values so that a comparison can be made and the effectiveness of the

techniques employed may be evaluated.

Problem: minimize Y = 100 (x - x 2
)
2 + (1.0 - x )

2

Exact Solution:

Y = 0.0
opt

x
±

= 1.0

x
2

= 1.0

H =

802 -400

-400 200

H
-l

0.5 1.0

1.0 2.005

where all numbers given are exact.

Fletcher and Powell's version of Davidon's variable metric technique

found an optimum solution:

Y = 10

"

6 - 0.0
opt

x = 1.00007 - 1.0

x., = 1.00017 ~ 1.0









x2

-2.0

Start

-1.0 J-

Rosenbrock's Curved Valley Function

Figure 4
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and the approximated inverse Hessian matrix

H'

0.5055 1.0051

1.0051 2.0035

-l

which represents an error of less than 1%.

The matrix inversion subroutine with the approximated H
~A as its

input resulted in the Hessian matrix:

H =

828.3

-415.5

-415.5

209.0

in error of about 4%. This error is more than acceptable for the purposes

of sensitivity analysis.

TABLE II

Sensitivity Data of Rosenbrock . function:

Ax for Specified Ay

Y AY X. Independent Simultaneous Variation
opt

opt Variation X . = .399mm X
2

- 1037.

10~ 6 0.10 1.00007 ±.0155 Ax = +.319
/

Ax = +.012

1.00017 ±.0309 Ax
2

= +.633 Ax
2

= -.006

Analysis :

If the response surface were to be constructed from the sensitivity

data shown with no knowledge of the function under consideration it would

resemble Figure 5.
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2.0

1.5 —

1.0"

0.5—

(1.318, 1.635)

Opt (1.0, 1.0)

(0.682, 0.365)

0.5 1.0 1.5 2.0

Predicted Shape of Rosenbrock Function at the Optimum

Figure 5
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A comparison with Figure 4 shows that the sensitivity analysis at

the optimum gives the desired results. The above figure shows that the

function is extemely sensitive to changes along the x-^ axis (Ax = ±.015

for Y = 0.1) as well as to changes along the x axis (Ax = ±.031). In

contrast, it is shown that a skew ridge exists along the direction defined

by Ax = .318, Ax~ = .633 and that if varied simultaneously x may

be changed by 30% and x~ by 60% before Y changes by 0.1.
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VII. EQUALITY CONSTRAINTS

In the optimization of multi-variable problems it is often the case

that only certain combinations of the variables are either meaningful

or acceptable. The imposed restriction usually assumes the form of an

equality (or inequality) constraint:

G(x ) =
i

The analytical solution of such a problem can be found by the method

of Lagrangian Multipliers [7] , which seeks values of the parameters for

which the modified objective function

F* = F + AG (11)

is stationary, i.e.

F* = F + AG =0 (12)XXX
Solving for A yields

F

A = - -r- (13)
G
x

A is meaningful in that it represents the cost of the constraint G. If

G were relaxed by 1 unit then F could vary by X.





In the general case however, numerical search methods are unlikely

to locate all types of stationary points for the modified function using

Lagrangian Multipliers. A more feasible approach is that of penalty

factors. [8]

Penalty Factors

In the use of penalty factors a modified function which incorporates

the constraint is defined as

F* = F + PG 2
(14)

where P is a large positive-valued constant (for minimization) . If P

is chosen large enough then G is forced close to zero in the search for

the optimum. At the optimal solution G is equal to some small quantity

£. If £ is not within an acceptable distance from G then P is in-

creased until an optimum is found which satisfies G within £. The

cost of the constraint can be found in a manner identical to the method

of Lagrangian Multipliers.

At the optimum of the modified function of (14)

F * = F + 2P£ G = (15)XXX
so that

F

2P£ = - -^ = X (16)

x

is the cost of the constaint G.

-27-





Although the idea of a penalty function seems to have been conceived

some years ago (Courant [1943]), there has been very little computational

experience with regard to its applications. By examining equation (16)

it is observed that as £ approaches zero, P becomes infinitely large.

Large values of P however effectively produce a sharp ridge in the con-

tours of F*, and most search techniques are troubled by the existence

of such a ridge. The choice of P is therefore a compromise between

large values for small violations in G, and smaller values to eliminate

troublesome ridges in the modified objective function.

In using Davidon's optimization technique however, it was discovered

that even if a ridge presents no problem in finding the optimal solution,

P may not be chosen arbitrarily large. For this situation, £ becomes

so small that changes in the parameters of order e produce corresponding

changes in F which are less than the criterion for convergence in the

search for the optimum. If £ is to be meaningful it must be large enough

to possess a unique solution. In other words changes in £ must be large

enough to affect the terminal convergence of the optimization search. It

is therefore necessary to possess some insight into the problem before

the penalty factor method can be employed.

We may note that for any given equality-constrained optimization

problem, . X will possess a unique value. Analytically A is found to

be 2P£ as £ approaches zero and P approaches infinity. Let us

denote e as the maximum allowable violation in the equality constraint
max

and £ . as the minimum £ which will produce a unique optimum within
min

the limits of the convergence criterion. £ must now satisfy

£ . < £ < £
min max

for a meaningful solution.
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Values for X and P are estimated within one or two orders of

magnitude such that

2P, „. e - A,
N

.

(est) (est)

If the resulting optimum possesses an allowable £ then the solution is

found with the cost of the constraint

A = 2Pe (17)

and the constraint violation:

£ = G - G (18)opt

If £ > £ or £ < £ . then P must be increased or decreased re-max mm
spectively until an allowable £ is found.

Example Problem

To illustrate the use of the penalty factor method for equality con-

strained optimization problems the following two examples are offered for

comparison and analysis.

Let F
1
(x

1
, x

2
) = F

2
(xr x

2
) = (x

x
- 3)

2 + (x
2

- 3)

and G
i^
x
i»

x o^
= x

l
+ x

2
~ *

=
°

G (x , x
2
) = x

1
x
2

- 4 =
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Constrained minimum

Figure 6a

X = 1.0

G
2

=

Figure 6b

-F

Interpretation of Cost of the Constraint —

-

Figure 6
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The response surfaces are shown in Figure 6, where the equality

constrained function has a minimum value at the same point for both

problems, i.e. x
1

= x~ = 2.0. Since the unrestricted function is the

same and the solution lies at the same point, then the gradient F is

the same for both problems. The constraint and its gradient G^ are

different however and consequently the cost of the constraint A will

have two distinct values.

Analytically it can be shown that -F /G = A - 2 for the linear
X X

constraint x + x = 4 and that -F /G = A = 1 for the hyperbolic

constraint x x = 4. The cost of the constraint has been reduced in

the second case because F is less sensitive to changes in G~ at the

optimum.

Computer Results:

For F* = F + P G
2 and F* = F + P G*

and P = 100 P = 100

F* = 1.980 F* = 1.994

x = 2.005 x
x

= 2.0009

x
2

= 2.005 x
2

= 2.0020

e = g* - G = .010 £ = .0057

A = 1.988 A = 1.141

In the second case, a minimum was found which was very close to the

constraint, e.g. e = .0057. As a result A = 1.141, a difference of

.141 from the analytical value. This error may be explained by examining

the magnitude of E. An E of .0057 is very small for the problem under
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consideration. Changes in the variables of order £ will not affect the

optimal solution, so that £ is actually less than £,,.,„ as previously
MIN r J

defined.

A second optimization was performed with P reduced to 50 in order

to increase £. (Remember that it has been shown that 2Pe is constant),

The results were:

Y* = 1.989

X
l

= 2.0065

X
2

= 1.999

£ = .011

A =: 1.07

It is observed that decreasing P resulted in a more meaningful value

for £ and consequently a closer approximation to the const constraint, A,
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VIII. SENSITIVITY ANALYSIS OF A NUCLEAR ROCKET ENGINE

As was previously mentioned, the primary purpose of a sensitivity

analysis is to aid the design engineer in constructing a system which

will operate in an optimal fashion, despite variations in the controlling

parameters. To that effect, an illustrative example is presented whereby

the engine design parameters of a nuclear rocket are optimized in order

to achieve a maximum payload at a specified hyperbolic velocity.

A set of mathematical models of the elements of nuclear rocket

engines, suitable for detailed systems analysis, has been developed [9]

which constitutes the basis for a digital computer program called

NUROC/SAC (Nuclear Rocket _Systems Analysis Code) . The Code has been used

to describe a number of existing engines and the results obtained were

found to be accurate [10]

.

ESCAPE [11] is another computer code which calculates geocentric

(or planetocentric) tangential thrust escape trajectories and which may

be used in conjunction with NUROC/SAC.

Input Parameters

From a design viewpoint the most important input parameters to

NUROC/SAC are:

Q thermal power of the reactor, watts

D diameter of the reactor core, meters

L length of core, meters

L/D ratio of core length to diameter

T maximum allowable core material temperature, °K
cmax





p° nozzle chamber stagnation pressure, n/cm 2

NAR nozzle area ratio: A . /A
exxt throat

The output format of NUROC/SAC consists of a summary of operating variables

including the input design parameters, defining entirely the characteristics

of a specific nuclear rocket engine. The most important of these and the

ones which will be used as inputs into ESCAPE are:

m total engine propellant mass flow

F total engine thrust

m total engine mass
£i

Additional inputs to ESCAPE which must be specified are:

m initial mass in earth orbit
o

H initial orbital altitude
o

V _ final hyperbolic excess velocity specified

K„ tankage to propellant mass ratio

The output of ESCAPE may assume a variety of formats but the payload

delivered at the specified hyperbolic velocity is the payoff in the opti-

mization problems which follow. The payload is defined as the initial mass

minus the engine mass, the tankage mass, and the propellant mass required

to reach V, _.
hf

A previous study [12] has indicated that within the range described by

technological constraints the payload performance of the nuclear rocket

will increase monotonically with the maximum allowable core material
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temperature and the nozzle area ratio, and will decrease monotonically

with the chamber stagnation pressure. Thus choice of these parameters

is limited to technologically realizable values. Typical values presently

in use are:

T = 3000 °K
cmax

p° - 300 n/cm 2

NAR = 100.

The power, power density, diameter, and length which parameterize the

core geometry may be varied in a constrained but optimal fashion to describe

an engine which will inject the maximum payload into a specified inter-

planetary trajectory for a given initial mass in earth orbit. The problems

which follow will consider an initial mass of 100,000 kilograms in an earth

orbit of 500 kilometers and will optimize the core geometry to inject the

maximum payload into a trajectory described by a hyperbolic excess velocity

of 10,000 m/sec.

Optimization of Core Geometry

It is interesting to note that if any three of the four engine

parameters, power (Q) ,
power density (ip) , diameter (D) and length (L)

,

are specified then the fourth is automatically determined. Since the

length and diameter describe the volume, the power density can be ex-

pressed as a function of Q, L, D, i.e.,

2
ip = 4Q/ttD L

Thus the optimization of core geometry is reduced to a 3-dimensional

problem.
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Maximize Payload: Free Parameters Q, \p , L/D

The following example maximizes the payload delivered by a nuclear

rocket with free parameters: power (Q) ,
power density (ty) , and ratio

of length to diameter (L/D).

Starting Point:

Q = x = 2000. MWt

\p = x = 6.0 x 10 9 W/m 3

L/D = x = 4.0

TABLE III

Sensitivity Data at the Optimum

Ax for Specified Ay

Y .

opt
AY = 1% x :

opt
independent

Variation
Simultaneo
X = 39.5

us Variatior
X = 1105.

i

X - 6150

31,630 Kg. 316. Kg Q=1832 MWt AQ=±333. 68. -28. 28.

ip=8. 84x10 9

W/m3

Aip=±3.03
g

(xlO )

3.88
(xl0 y

-.062
q

i (xlO )

-• 017
9 N

(xl0 y
f

L/D=4.80 AL/D=±.57 .387 .677 .199

Analysis

:

When both \p and L/D are free parameters the optimized values

become so high that the cost of the uranium necessary to make such a

reactor critical would become prohibitively expensive. Also, a length

to diameter ratio of approximately 5 and a power density of 9x10 W/m

would describe a highly inefficient reactor due to excessive neutron

leakage through the core ends. Other important design factors (such as
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shielding), which are not now contained in NUROC/SAC, indicate that the length

should be only slightly larger than the diameter. It should also be noted

in the sensitivity data that \p is quite flexible (Ai|» = ±3xl0 9
) and

that smaller values may be chosen with little resulting loss in payload.

This problem should serve as an example that one cannot randomly

optimize variables or undertake a sensitivity analysis without first

acquiring a knowledge of the system under consideration. With these

facts in mind, a second optimization problem is solved in two-dimensions

with L/D fixed at 1.5.

Maximize Payload: Free Parameters Q, ip

Starting Point:

Q = x = 2000 MWt

ip = x
2

= 6.0xl0 9 W/m 3

TABLE IV

Sensitivity Data at the Optimum

opt
AY = 1% X

30,938Kg. 309.

op'

Ax for Specified Ay

Independent Simultaneous Variation

Q=1823 MWt

i|;=4.97xl0
9

W/m
:

Variation

AQ = ±339.

A^ - +.160

(xlO
9
)

X = 5151

340.

-.02

(xlO
9

)

X = 23630

9.6

.159

9
(xlO )

Analysis :

The restriction on L/D (fixed at 1.5) results in a loss in optimal

payload of only 2 percent. It is interesting to note that the optimal

power and allowable deviation are almost identical to the three-variable

problem. The power density however has a considerably lower optimal
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value and A^ is much smaller when L/D is fixed.

The sensitivity data reveals that any power between 1500 and 2150 MWt

may be used if ty is held constant with only a small (1%) resulting loss

in payload. In contrast the power density must remain close (within 4%)

to 5.0xl0 9 W/M 3
. The fact that the eigenvectors are located close to the

Q and ty axes implies that little more can be gained by varying Q and

Tp simultaneously.

Maximize Payload: Free Parameters Q, L/D

With the discovery that \p and L/D cannot both be free and having

fixed L/D at 1.5 it would now be advantageous to fix ty and optimize

Q
on Q and L/D. A value of 3.0x10 W/M is chosen for the power density

based on accepted values for existing nuclear rocket engines.

Starting Point:

Q - x - 2000 MWt

L/D = x
2

= 2.0

TABLE V

Sensitivity Data a t the Optimum

"opt
AY = 1% X

opt

Ax for Specified Ay

Independent Simultaneous Variation
Variation X = 935. X = 3867.

30,675 Kg. 306. Q = 1542 MWt

L/D = 1.67

AQ = ±397

AL/D = ±.78

AQ = 114

AL/D = 0.79

AQ = 390

AL/D = -.056

Analysis:

When the power density is fixed both the power and the ratio of length

to diameter have large acceptable variations. The power may vary from 1150
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to 1950 with L/D and ip fixed, and L/D may vary from 1.9 to 2.45 with

Q and ip fixed. This allows for considerable flexibility in designing

an optimal engine as long as the power density remains relatively constant.

The least sensitive direction of change is associated with the mini-

mum eigenvalue. The associated eigenvector indicates that L/D may still

vary from .9 to 2.45 and Q need not remain fixed, but may vary by ±114 MWt

as long as the direction of change from the optimal value coincides with

changes in L/D.

Verification of Results

In order to verify that the predicted sensitivity of the optimized

variables is accurate, the allowable deviations were substituted into

NUROC/SAC and ESCAPE and the resulting payload was computed. A comparison

was made to check if the payload remained within the predicted 1% of the

maximum. The optimal values were first rounded-off to Q = 1550 ±400 MWt;

L/D = 1.67 ±.75.

TABLE VI

Comparison :

Maximum payload minus 1% = 30,370 Kg.

Independent Variation

I. AL/D, Q fixed

II. AQ, L/D fixed

L/D

Simultaneous Variation

Payload (Kg)

.90 30,271

2.45 30,520

£
1150. MWt 30,295

1950. MWt 30,420

9l
L/D

1435 .90 30,135

1665 2.45 30,445
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The table of comparisons indicates that if Q and L/D are increased

either independently or simultaneously the loss in payload is even less

than the predicted 1%. If decreased the deviations become slightly larger

than 1% but are still highly accurate. This may not always be the case.

It must be realized that the sensitivity analysis is accurate only

at the optimum. For functions which are very flat (i.e. insensitive to

change) the predicted variations may be quite large, as indeed they are

in the example given. When the variations are substituted, the function

is no longer close to the optimum and results may vary considerably from

those predicted. For this reason it is prudent to verify results especially

at points far from the optimum.

Another reason for verifying results is that there exist small in-

herent errors in the optimization search, matrix inversion and eigen

analysis subroutines. Care should also be taken in defining the conver-

gence criterion because if . the computer is forced to make repeated searches

near the optimum the values for the inverse Hessian matrix will be destroyed.

Any resulting sensitivity analysis will be meaningless.

Application of Penalty Factor

In the previous two-dimensional optimization problem an optimal power

of 1550 MWt and length to diameter ratio of 1.67 was established for a

fixed power density of 3.0x10 M/W . As was previously mentioned for

equality constrained problems it is of interest to know the cost of the

restriction on power density X. The following example employed the

penalty factor method to optimize a three-variable problem with the constraint;

G(x
3
) - x

3
- 3.0xl0 9 =
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Starting Point:

Q = x = 2000 MWt

L/D = x
2

= 6.0

ip = x = 4.0x10° W/M 3

Penalty Factor = P = 10,000

Results:

Payload = 30,670 Kg.

Q = 1547 MWt.

L/D =1.7

^ = 3. 020x10 9 W/M 3

e = g* - G = .020

X = 2P£ = 406.

The cost of keeping the power density constant is 406 Kg. of payload

Per (ip W/mJ ).
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IX. CONCLUSIONS AND RECOMMENDATIONS

A sensitivity analysis at the optimum has been performed through

the use of existing computer codes. By simply defining an objective

function and any number of independent variables an optimized solution

is found. In addition, it has been shown that the sensitivity of each

of the variables at the optimum may be given in a useful format. With

all others held constant, the range that each variable may assume

before a specified degradation in performance occurs is given. Also,

the length and direction of the axis of all ridges in the objective

function are listed in order of decreasing magnitude. With this

information at hand a complete knowledge of the sensitivity of all the

input parameters is available to the user and decisions regarding

optimal parameter choice can be made, taking into account the

flexibility given by the sensitivity knowledge.

The methods employed were shown to be highly accurate when dealing

with purely mathematical problems. The sensitivities of Rosenbrock's

parabolic valley function were found with little difficulty. Engineering

applications, on the other hand, require a great deal of insight into

the problem before a sensitivity analysis may be started. Scaling the

variables is important so that the sensitivity information is meaningful.

The nuclear rocket example studied the engine performance related to

power, power density and ratio of length to diameter of the nuclear core.

A scaling problem existed because the power in watts and power density

9
in watts/cubic meter were of the order of magnitude of 10 , while the

length/diameter was approximately unity. Usually such a problem can be





avoided by normalizing each variable by dividing it by the order of

magnitude. This would be fine if the acceptable deviations occurred

within the same number of significant figures. However, if one variable

is much less sensitive to change than all the others, then the eigen-

vector associated with the minimum eigenvalue will be dominated by that

component and very little knowledge can be gained about the other

variables in that direction. It would be convenient to modify the

computer program so that the sensitivities would be normalized instead

of the variables. Of course, the user could always eliminate the

problem by normalizing the variables the first time, and after observing

the resulting deviations, normalize the sensitivities and optimize

again. The optimized solution will be the same but the sensitivity

data will be more accurate and meaningful.

Another problem experienced when working with engineering problems

was in defining a convergence criterion. For the Rosenbrock function a

change in the variables of 10"^ produced significant changes in the

objective function. When optimizing the nuclear rocker, however, the

maximum payload was essentially determined when the normalized variables

were accurate in the second decimal place. With the convergence criterion

set at 10"
, the program made over a hundred more iterations before

stopping and found an optimum which was only about one kilogram more in

payload. When the optimization search stays close to the optimum for

many iterations, the inverse Hessian matrix is destroyed and any

resulting sensitivity analysis has no meaning. A modification in the

program is required so that when the optimum has essentially been

determined, the inverse Hessian matrix can be stored and any subsequent

refinement of the optimum will not affect the sensitivity data.
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Equality constrained optimization has been discussed but not in

detail. The penalty factor method used by Kelley was implemented

to determine an approximation to what is usually referred to as the

cost of the constraint.

It would also be of interest to know how far in the plane of the

constraint and normal to it, one may travel on the response surface

before reaching a specified change in the optimum. This thesis has not

considered such a sensitivity analysis. The techniques involved are

similar, but more attention is needed in this area.

Inequality constrained optimization problems are generally no more

difficult to solve than equality constrained ones. For well behaved

functions, the solution either does not violate the constraint or lies

on the boundary and may be treated as an equality constraint. In

either case, the techniques developed in this thesis can be applied.

Care should be taken to try ;.a variety of starting points so that if the

same solution is reached, the function can be assumed to be well

behaved

.
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APPENDIX A

This appendix describes the implementation of the variable metric op-

timization method and matrix inversion and eigenvalue analysis computer

programs for the purpose of sensitivity analysis. The input variables

and their definitions are shown along with a flow diagram illustrating

how the programs were modified to run successively and produce the desired

sensitivity data. A typical output format is also given.

The matrix inversion and eigenvalue analysis subroutine listings con-

tain brief descriptions of the methods employed and their references. For

a complete description of the computer coded variable metric method consult

reference 6.





BLOCK DIAGRAM OF CONTROLLING PROGRAM
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START

LOAD

N, STEP, a, 3,

NEXP, DELLAM

i CHANGE, JPOINT

X(J), X(J)MIN,

: X(J)MAX, DELX(J)

TEST

N < 10

X(J) > XMIN(J)

X(J) < XMAX(J)

FALSE
HALT

FALSE jqjIN (J ) =X (J )

XMAX(J)=X(J)

TRUE

CALL VARMET

(N, F, X
s
XMIN, XMAX,

DELX, STEP, a, 6,

NEXP, DELLAM, CHANGE,
JPOINT, JFLOW, H)

TRUE

RETURN

JFLOW
N.E.2

V
FALSE

PRINT OPTIMUM AND

!
CO-ORDINATES

: FB, X(J) J-l, N
'

TEST CONSTRAINT

G =

TRUE

NGRD =

NIMP =

INITIAL CALL

MODEL (N,F,X)

/_

NEVAL

FB

JFLOW

1

F

INITIAL PRINTOUT

NIMP, NGRD, NEVAL,

FB, X(J), J=l, N

. PRINT INVERSE

;
HESSIAN MATRIX

H(I,J)
J —

CHANGE STORAGE

MODE

HH(I) = H(I,J)

V

MATRIX
INVERSION

OPTIMIZATION LOOP

A-
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= GS -GG

= 2P£

PRINT

£, X

CALL MINV

(HH, N, D, L, M)

RETURN

CALL EIGEN

PRINT HESSIAN

MATRIX

HH(I)

CHANGE STORAGE

MODE

H(I,J) = HH(I)

STORE DIAGONALS

UNCOR(I) = H(I,I)

j

1

MV =
i

1

>-\

(HH, R, N, MV)

RETURN
-

CHANGE STORAGE MODE

H(I,J) = HH(I)

STORE ;EIGENVALUES

DECEIG(I) - H(I,I)

SENSITIVITY EQUATIONS

DY =

1 DX = / 1^1
1

>/ ki

2DY

V. = k. V.
l li

EIGENVALUE

ANALYSIS

READY FOR OUTPUT

PRINT

OPTIMAL Y VECTOR OF OPTIMAL X

ASSIGNED VARIATION 'DY'

INDEPENDENT VARIATION ±DX.
l

SIMULTANEOUS VARIATION X., V..

EXIT





Variable Metric Program

Input variables

N

STEP

ALPHA

BETA

NEXP

DELLAM

CHANGE

JPOINT

X(J)

XMIN(J)

XMAX(J)

DECX(J)

and definitions:

the number of independent variables

initial step size for X components

factor by which step size is increased (a >_ 1)

factor by which step size is decreased (0 <_ fc _< 1)

limit on number of experiments along a vector line

termination criterion for vector search expressed as a

range fraction

program termination criterion expressed as a range fraction

control for type of numerical differentiation desired in

gradient subroutine.

1 = forward difference

2 = backward difference

3 = central difference

vector of initial values for independent variables

lower bound for each independent variable

upper bound for each independent variable

step size for each independent variable used in gradient

subroutine for numerical differentiation.

There are N + 2 data cards required as inputs for each program execution.

The first is an identity card written in any format. The second card contains

the first eight input variables listed above in the following format fields.

(110, 3F10.4, 110, 2F10.4, 110)

Each of the N remaining data cards contains the initial value, range

and step size of the independent variables according to the following format

statement. FORMAT (4F15.5)
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A typical output from z'r.ci variable metric optimization program follows.

It should be noted that for the inverse Hessian matrix to be printed properly

the array designated H must be dimensioned exactly, i.e. if N - 2 then

DIMENSION H (2,2).
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)B0

:ep

,PHA

ITA

!XP

LAM
IANGE
»OINT

C.10C0Q
1.00000
C. 50000
5

0.01000
0.0CC1C
1

1.20000
1.0000C

~ XMIN

-5.00000
-5.00000

XMAX

5. 00000
5.COO00

D2LX

C.C010C
0.00100

NIMF NGRD NEVAL FUNCTION INDEPENDENT VARIABLES

0.584002
C.26200E

01
00

-0. 120002
;-C.51186B

C. 680542-01
0.10833E-01
C.40146E-12
1.384532-1

or
00

-C.35741E 00
0.142592 00
0.59605E-07
.S3192E-G6
202302-06

i 0. 1000CE 01
-0.3576 32-06
-C.22444Z 00
0. 895462-01

-0.417232-06
. 11S362-

-C. 315732-08

TIMIZATICN COMPLETE APTEI
-

"ST FUNCTION EVALUATIONS
6 9 53 0.396642-13 -0.20233E-06
THE INVERSE HESSIAN MATRIX IS

-0. 325562-08

0.4999

HESSIAN MATRIX

3.9973

*ERRCR*** EN-

PRCGEAMME WAS EXECUTING LINE 65 IN ROUTINE M/PROG WHEN TERMINATION OCC
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Matrix Inversion and Eigenvalue Analysis

The example output of the variable metric computer code shown previously

lists the optimum point and the inverse Hessian matrix at the optimum.

Before the matrix inversion subroutine (MINV) may be implemented the upper

triangular elements of the symmetric H matrix must be stored in a singly

dimensioned array (HH) . This was necessary because of the input format

utilized in the calling sequence of MINV and was accomplished by inserting

a 'DO' loop in the main program.

Once the matrix has been inverted, the elements of the Hessian are

printed and the diagonal elements stored for calculation of sensitivity

information. Implementation of the eigenvalue analysis subroutine

(EIGEN) merely requires defining the constant MV, i.e.

MV = eigenvalues only

MV = 1 eigenvalues and eigenvectors

A dimension statement in the main program for sufficient storage space of

the vectors L, M, (utilized by EIGEN) and R (utilized by MINV) is also

necessary. All of the required information to construct the table of

sensitivity data is now available in the main program. Insertion of the

proper equations and output statements completes the modification for

sensitivity analysis.

A listing of MINV and EIGEN and an example output format follows.
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SUL3R0UT IN li MINV

purpose
invert a katrix

U S A G E

CALL M I N V ( A , N , D , L , M )

DESCRIPTION OF P A :< AM E '1 rR S
. ,.,

A - INPUT MATRIX, DESTROYED IN COMPUTATION AND rtEj?L;iC*

FESULTANT INVERSE.
N - ORDER 0? MATRIX A

D - RESULTANT DETERMINANT
L - fcORK VECTOR OF LEN.GTE N

H - WORK VECTOR CE LENGTH K

REMARKS
'•MATRIX A MUST EE A GENERAL MATRIX

SUBROUTINES AND FUNCTION SUEPROGRAMS REQUIRED

NONE

METHOD
TilE STANDARD GAUSS- JORDAN METHOD IS USED. THE DETERMINE .'

IS ALSO CALCULATED. A DETERMINANT OF ZERO INDICATES IMT*
THE MATRIX IS SINGULAR. .
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fcUU ECU I I N IS Ml N V ( A, N , D, L , M)

DIMENSION Ml) #L O) iB(1)

15 A DOUliLi? PRECISION VERSION Of THIS ROUTINE IS DE: " F I , 'I

C IN COLUMN \ SHOULD Br REMOVED FECM THE JCU/L; PRECIS! .

STATEMENT WHICH FOLLOWS.

DOUBLE FFECISICN A, D

,

EIG A / HOLD

THE C MUST ALSO BE REMOVED FROM DOUBLE PRECISION STATIMEMS
APPEARING IN OTHER ROUTINES USEE IN CONJUNCTION hTTfi THIS
ROUTINE.

V

THE DOUBLE PRECISION VERSION CE THIS SUBROUTINE MUST ALSO
CONTAIN DOUBLE PRECISION rORTEAN FUNCTIONS. ABS IN STAIIME1
10 MUST 3z CHANGED TO EABS.

SEARCH 5CE LARGEST ELEMENT

1=1. G

IK=-N
EO EC K=1,N
RK=KK+N
L(N)=K
I ( N )

= K

K K = N K K

3IGA=A (KK)

DC 20 J=K,N
IZ=N* (J-1)
DC 20 I=K,S
IJ=IZ+I
Ir( ABS(BIGi)-
EIGA=A (10)
I(K)=I
M (K) =J
CONTINUE

ABS(A(IJ))) 15,20,20

INTERCHANGE ROWS

I=L(K)
IP(J-K) 35,35,25
IlrK-N
DC 30 1=1,

N

KI=KI+N
HOLD = -A (KI)

JI=KI-K+J
A (KI)=A (01)
A(JI) =HCIE

INTERCHANGE COLUMNS

I=K (K)

IE(I-K) 45,45,38
JP=N* (1-1)
DO 40 J=1,N
JK=NK*J

A-
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J I J L> J

|OLD=-A (JK)

A (JK) = A (JI)

A (01) =ii CLE

divide column 3y minus eivci (value of pivot ei
CONTAINED IN i-IGA)

tF(3IGA) 48,46,48
D= .

ETUBN
CO 5 5 1=1,

N

I? (I-K) 50,55,50
IK=NK+I
A (IK) = A (IK)/ (-BIGA)
CONTINUE

SEDUCE KA1SIX

DC 65 1=1 ,N
IK=NK+I
|CLD=A (IK)

IJ=I-N
DC 6 5 J=1,N
IJ=IJ+N
IF (I-K) 6C,65,6C
IE(J-K) 62,65,62
KJ=IJ-I+K
A (IJ) =HCLD*A(KJ) +A(IJ)
CONTINUE

EIVIEI BOft BY PIVOT

KJ=K-K
DO 7 5 J-1,.K
IJ-=KJ + N

IF(J-K) 7C,75,7C
A (KJ)=A (KJ)/BIGA
CONTINUE

PRODUCT OF PIVOTS

D=D*EIGA

REPLACE FIVCT BY 5ECIPROCAL

A (KK) = 1.0/EIGA
CONTINUE

FINAL SO w AND COLUMN INTERCHANGE

MI
. r

MI
;• t

K = N

K= (K-l)
IF(K) 150,150,105
|=L(K)
IF (I-K) 12C,120,108
|C=N* (K-1 )

Ir=n* (i-i)
DO 110 J = 1 ,N
JK=JQ+J
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I0LC = A (JK)
i i

=

j Li +

j

IvlK)=-ft (J I)

l(JI) =iiCLD
[=:•; (;<)

f(J-K) 1CC,100,12£

:0 13 1 = 1, N

blD=A (KI)
I=KI-K+J
i(KI)=-A (JI)
(JI) = HCIE
I 10 ICC
ETUBN

. r
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SUBROUTINE EIGEK

pukpo
COMPUTE EIGENVALUES AND EIGENVECTORS C? A .;

MATRIX

usag:
caii eiges (a,r,n,mv)

description cf parameters
A - ORIGINAL MATRIX (SYMMETRIC), DESTROYED IN COMPUTATION

RESULTANT EIGENVALUES ARE DEVELOPED IN DIAGONAL OF

MATRIX A IN DESCENDING CrIEE.
E - FESUL1ANT MATRIX Or EIGENVECTORS (STORED COLUMNWISE,

IN SAME SEQUENCE AS EIGESVALUES)
N - ORDER CF MATRICES A AND ?.

MV- INPUT CODE
COMPUTE EIGENVALUES AND EIGENVECTORS

1 COMPUTE EIGENVALUES ONLY (R NERD NOT DE
EIKESSICNEE EUT MUSI STILL APPEAR IN CALLIN
SEQUENCE)

BEHAEKS
ORIGINAL MATRIX A MUST BE EEAL SYMMETRIC (STORAGE MODS*1)
MATRIX A CANNOT EE IN TEE 2b?.c ICCATICN AS MATRIX F

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
NONE

METHOD
DIAGCNALI2ATICN METHOD ORIGINATED EY JACOEI AND ADAPTED
BY VCN NEUMANN FOR LARGE COMPUTERS AS FCUKE IN 'MATHE MATICAi
METHODS FOR DIGITAL COMPUTERS', EDITED EY A. RALSTON AND
K.S. KILE, JOHN KIL2Y AND SONS, NEW YORK, '1962, CHAPTER 7
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SU3 ECU TINE iilGEN (A,R,N,MV)
DIMENSION A (1) ,B (1)

IF A DOUBLE PRECISION VESSICN OF THIS ROUTINE IS DES
C IN COLUMN 1 S H C U L £ BE E E K C V I E 5 5 C M 1 K E D C 3L I P R
STATEMENT 51HICH FOLLOWS.

DOUBLE PRECISION A, R, ANORH, ANRKX ,THR, X, Y,SINX ,SIN X2 ,CCS X

,

1 CCSX2,SINCS, RANGE

Till C MUST ALSO BE REMOVED FRCK DOUBLE PRECISION STATEMEN
APPEARING IN OTHEB ROUTINES USE! IN CONJUNCTION WITH
ROUTINE .

THE DGUELE PRECISION VERSION OF THIS SUBROUTINE KDST MSC
CONTAIN DOUBLE PRECISION FOETEAK FUNCTIONS. SORT IN STAT.
40, 68, 75, AND 78 MUST EE CHANGED TC ESCRT. A3S IN STATi
62 MUST BE CHANGED TC DABS. THE CONSTANT IN STATEMENT 5 S^
BE CHANGED TC 1.0D-12.

~ ,

ul:

GENERATE IDENTITY KATSIX

RANGE-1 . CE-6
pF(MV-l) 10,25,10
IQ-=-)l

DO 2G J=1,K
I Q a I C N

DO 2G 1=1,

N

IJ-IC*I
R(IJ)=C.C
IF(I-J) 20,15,20
R (IJ) = 1 . C

CONTINUE

COMPUTE INITIAL ANL FINAL NCEMS (ANOEM AND ANORMX)

ANOPM=G.C
DC 35 1=1,

N

DO 35 J=I,N
IF (I-J) 30,35,30
lA=I*(J*J-J)/2
&NORM=ANCRK*A (IA) *A (IA)

CONTINUE
IF (A NORM) 16 5,165,40
ANORH=1 .4 14*SQRT (ANORM)
ANRMX-ANORF*RANGE/FLCAT(N)

INITIALIZE INDICATCRS AND CC^I-UIE THRESHOLD, IHE

IND=C
THR=ANCRM
THR=THR/FLOAT (N)

L=1
M=L + 1

CCMEUTE SIN AND CCS
A-13





hQ= (« *M-M) /2
LQ = (L*L-I)/2
L K = I + K c

IF( AES(A (LK))-THR) 130,65,65
IND=1
LL=L+LC
M M = M M C

X=0.5* (A (LL)-A (MM) )

Y = -A (LM)/ SCKT (A (IK) »A(LK) *X*X)
I F ( X ) 7 0,75,75
Y=-Y
felNX=Y/ SCr-T(2.0*{1.0+( SCRT (1.0-Y*Y) ) ) )

EINX2=SINX*SINX
|CSX = SCH1 ( 1.G-SINX2)
lOSX2-COSX*COSX
sixes -SINX*CCSX

ROTATE I AND M COLUMNS

ILC'=N* (1-1)
1kc-n* (m-1)
DO 125 1=1, N

10= (I*I-I)/2
Ir(I-L) 80,115,30
IF(I-M) 85,115,90
I t

v
. =I+MC

GO TO 95
IM = K + IQ
IF(I-L) 1CC,1C5,1G5
IL = I + LC
30 10 11

C

IL=L+IQ
K = A (XL) *COSX-A (IH) *SINX
I (IM)=A (II) *SIKX+A(IK) *CCSX
k (II)=X
|F(MV-1) 12 0,125,120
ILH=ILC+I
IMR=IMQ+I
l-S (113) *CCSX-E (IMP) *SINX
|<IMR)=R (IIR) *SINX+B (1KB) *C CSX
3 (i lb) = x

IONTINUE
X = 2 . * 7i (LM) *SINCS
|=A (LL) *COSX2+A (MM) *SINX2-X
l=A (LL) *SIXX2+A (MM) *COSX2+X
I (LM) = (A (LL)-A (MM) ) *SINCS+A (LM) * (CCSX 2-SINX 2)

& (LL) =Y
& (MM) =X

TESTS ECS CCMELETION

TEST FCE £S = LAST COLUMN

IF (M-N) 135,140,135

30 TO 6

TEST FOE L = SECCNE FECK LAST CCIUKN
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r;-
u- (n- i) ) u5,iso,m5

L = L 1

GO TC 5f-

IF(INC-l) 160, 155, 160
INC=C
GC TC 50

CCMEARE THRESHOLD WITH PINAL NORK

IF (TER-ANREX) 165,165,45

SORT EIGENVALUES ANE EIGEKVEC1CES

DO 185 I=1,N
IQ=IC+N
LL=I + (I*I-I)/2
IC=N* (1-2)
DO 185 J-I,N
JC=OC + N

HX=J* (J*J-J)/2
IF (A (LL)-A £KK)) 170,185,185
k=A(LL)
A(LL)=A (MK)

A (HM) = X

IF(KV-l) 175,185,175
DO 180 K=1,N
ILR=I0+K
Imr=jc«-k
X=K (ILR)
l(ILK)=R (1KB)
I (1MB) =X
CONTINUE
RETURN
END
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TYPICAL OUTPUT FORMAT
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ThZ INVSESS HZ5SIAS na^IX IS

3.50 5'4 63 2u

1.G95 VJOOO
.

1. 0051*4000

2. 3C.3S-4&Q )

»- c "* » t. v. > • ; .• 1 y

32 6. 2'>.;S -ill;":. .

C.MJ2

115.5432 2G9.:S69>7

.00 00

VECTCF CF OPTICAL X

1.00007 1.00017

fclGNTIE V A:\IATiON D2L * = C.I COCO

LCWABL? CH&irfs IN X WKS I >i HEP rriEr STL Y i-'OR ASSI^;

soa - c t x (i)

C '• - . C 1
•". r

- a

EI V itTil AT I

G

|0«AaL2 CHAK3H3 IN X VAHISD SlrtULl ABEOUSLY FOP ASSIGNEE VAEIAT

EI2VA

1.39868 ).31772 0.63301
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